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A complete analysis of an electrostatic field in a doubly connected polygonal domain may 
be carried out by determining a mapping function which maps an annular ring onto the 
polygonal domain. This function is well-defined up to a set of unknown parameters, which 
must be computed. This paper presents a method for computing the true values of these 
parameters to any desired accuracy, starting from arbitrarily chosen initial values. Compu- 
tational techniques are discussed and examples are presented which illustrate the applicabil- 
ity of the method. 

Let us consider Dirichlet’s problem for a doubly connected domain G in the plane 
of the complex variable z = x + iy. The domain may be infinite (z = co E G) or 
finite; it is formed by two polygons with N and M - N vertices, respectively. A 
concentric annular ring h < w < 1 in the complex w plane may be single-valuedly 
and conformally mapped onto this domain. The vertices A,, n = l,..., N and A,, 
m = N + l,..., M correspond to the points a, = exp(i&J and am = h * exp(i&,J, 
lying on the boundary circles I w 1 = 1 and I w / = h. In the case of the infinite 
domain, the point z = CO corresponds to some interior point of the ring w, = 
q*exp(iq), h <q < 1. 

The functions defining this mapping for the infinite and finite domains, respectively, 
may be written [l] 

z = Cl j fj [a1 (& ln $)r" . ii+, [4 (& ln %)lBm 

x 4 I ( & In c) .a, ( ln(~~iM)m) )]-2 . -$- + C, , 

z = Cl j fi [4 (i& In $)I’” * ,fi+, 1% (& ln $)rrn. + + C2. (2) 

Here a,(u) = 2 . h1/4 . C& (-l)k+l h”.fk-lJ . Sin[(2k - 1) TV] is the B-function of the 
tist type and pi = oli - 1, where oli are the interior angles, divided by rr, of the 
polygons in the G domain. 

133 
Copyright 8 1977 by Academic Press, Inc. 
AU rights of reproduction in any form reserved. ISSN 0021-9991 



134 VECHESLAVOV AND TOLSTOBROVA 

The construction of the function z(w) is equivalent to solving the previously 
mentioned Dirichlet problem [l]. However, z(w) is known only up to a set of unknown 
a priori parameters & ,... , #Jo, h, q, q, which must be computed. We encounter here 
the doubly connected analog of the well-known Schwartz-Christoffel problem. In [2] 
a method is described for determining the parameters relating doubly connected 
domains with symmetrical and similar polygons. Our development of this method 
allows us to remove certain of the earlier restrictions; in particular, this paper treats 
doubly connected polygonal domains of a general form. 

FIGURE 1 

First, let us discuss the case of the infinite domain (see Fig. I, where the domain 
with N = 4, M = 8 is presented). The interior angles 7rc+ (with respect to the 
domain G), the lengths of the &A, sides, and the angles pjsr of these sides with 
respect to a real axis are determined by using the given coordinates of the polygonal 
vertices Ai = xi + iyj (j, p = 1, 2 ,..., M). According to the boundary corre- 
spondence principle, the following inequalities are valid: 

*1 < *2 -=l *** < ?h , h+1 > hi+2 > -** > *At * (3) 

With the help of certain relations for B-functions {l, 31, it is possible to rewrite the 
basic formula (1) as 

z = Cl J fi [a1 ( In “;,. % jyn . fi+, [a, ( ihn ,f” “)lRrn 

x ia12 ($) .a42 (q$, - 9.,2 (Jg, . i&2 (*)l-2 . $ + c, ,(4) 

where aa is the a-function of the fourth type. 
By integrating around the outer circle ] w 1 = I, w = exp(i#) we obtain, instead of 

Eq. (4), 

x /C3lz (&) - 19,~ (+) - 9.42 ($-) . al2 (*)I-” - da,b + C, . (5) 
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Similarly, for the inner circle 1 w 1 = h, w = h * exp(i$), 

Under the conformal mapping, the circles / w 1 = 1 and 1 w / = h correspond to 
the contours of the polygons in the z plane. Hence, the arguments of z obtained from 
Eqs. (5) and (6) should undergo jumps by the values -7~1Bj at # = I& and should 
not change at the other points. This is possible only with real expressions in the 
braces over the complete circles / w 1 = 1 and 1 w / = h. We can satisfy this condition 
by setting 

y = ?r, w, = -q, h<q<l 

and taking into account that &(v), 8,(u) are real for u = (In q + ri)/2ni. 

(7) 

At t,!~~ < # < I,!J~ and 1 w j = 1 the argument of z obtained from Eq. (5) should be 
equal to the angle of inclination pI,2 of the first polygonal side A,A, . At +N+l > 
ti > h+2 and I w / = h, the argument of z obtained from Eq. (6) should coincide 
with the angle of inclination plN+1,N+2 of the second polygonal side A,+,A,+, . These 
requirements lead to the relation 

ii ' g t%h' = pN+l.N+2 - /4.2 + * ' (l - fll + flN+l).' (8) 

Equation (8) allows one to determine the value of one of the parameters, for instance 
&, provided the values #2 ,..., &, are known. The relations (7), (8) show that in the 
case of the infinite doubly connected domain the independent mapping parameters 
which must be determined are the quantities #2 ,..., #M , h, q. It is convenient to treat 
them as components of some (M + 1)-dimensional vector f; that is, to set t1 = 
4 2 ,...,&..m = A,, 6% = h, &,+I = 4. 

This paper deals with the procedure for obtaining the true parameter values to any 
desired accuracy using only a finite number of iterations starting from some initial 
state 5”. 

Let us arbitrarily choose initial values #20,..., &O, ho, q” in keeping with Eqs. (3) 
and (7) and then determine #,O from Eq. (8). Put C, = 1, C, = 0 and using Eqs. (4), 
(5), and (6), P er orm the integration for the contour lying in the w plane as follows f 
(see the dotted line in Fig. I). (1) From the point w = a, = exp(i#lO) proceed along 
the complete circle / w / = 1. (2) Then proceed along the radius # = #1o to the circle 
1 w I = (1 + h)/2, along the segment of this circle to the radius # = &+, , and 
finally along this radius to the point w = a,,, = h * exp(i&+,). (3) Proceed around 
the entire circle 1 w 1 = h. Now we fix the values of the complex scale constants C, , 
C, in such a way that the starting and the final points of the z(w) curve in the second 
part of the integration path coincide with the vertices A, and AN+I , respectively. 
Thus, as the result of integration we have a broken line Alo a** ANoAIAN+,A~+, a** 
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A,OAO N+1 in the z plane (see the thin line in Fig. I). In the general case, the coordinates 
xio, yjo of the vertex Ajo of this broken line differ from the coordinates xj , yj of the 
corresponding vertex Aj of the true polygon. It is convenient to use a scalar objective 
function to estimate “the distance” between the initial and the true figures 

Q(f) = (l/M) . ; [(xj - xi”)” $- (yj ~ yjo)2]1’2. 
i=l 

(9) 

If the condition Q < Q* = 0 is reached, the problem of finding the conformal 
mapping parameters can be considered solved. 

It is necessary to introduce a state which is intermediate with respect to the distance 
(Eq. (9)) between the initial and the true states [2,4]. A broken line 
Al *** &4AN+&v+z ‘.. &&,I > where the length J&, of an arbitrary section and 
the slope pi,P of this section are connected with the corresponding lengths A,A, , 
ApADO, and the slopes P~,~, py,?, of the true and the initial states are connected by the 
relations 

A”,& = ApAp + Ke . (A,A, - Aj”Apo), 
(10) 

t-%,9 = P;,?, + Kc . h.p - P:,.), 

where K, is the intermediate state parameter, satisfies the requjrement. Constructed 
in this way, the broken line for Kc = 1 coincides with the true figure A and for 
Kf = 0 with the initial figure A0 (the dotted line in Fig. I corresponds to Kf = 0.5). 
Let us denote by 4, , Jjj the coordinates of the vertex & . 

In practice, the computational procedure consists of several stages. In the course 
of each stage, a transition from the initial state to some intermediate state is made. 
To determine the correction d&K,) to the value of to, one solves the system of 
equations 

y ax,0 . A& = zp 0 

j-1 a& 
- x, 3 

y ?YBO - . A& = r”, - ypo, 
j-1 ati 

(11) 

for p = 1, 2,..., M. Since the number of variables here is less than the number of 
equations, it is natural to obtain the required solution using least squares. Hence, 
in the linear approach, the optimal corrections are the roots of the normal system 

where v = 1, 2,..., M, M + 1. The calculation is finished when a transition is made 
to the state A(&) for which the condition Q[%(&)] < Q<(O) is realized. If Q(& > Q*, 
then the state B just determined is taken as the initial state for the next stage, and the 
process is repeated again. To determine a suitable value of 0 < l& < 1, it is con- 



ANALYSIS OF PLANE FIELDS 137 

venient to carry out a simple sorting of the Kc values which decrease from unity, as 
is recommended in [2,4]. These references also show that the system (12) can always be 
solved and that the reqiured value of Re can alwayscbe found. The rate of convergence 
of the computational process depends upon the total number of domain vertices. 
This dependence needs special study and is not discussed here. 

The partial derivatives in Eq. (12) are determined by numerical integration. There- 
fore, the prpcess of numerical integration for the above-mentioned contour has to be 
carried out repeatedly during the course of the calculation. The contour integration 
path passes through the singular points a9 ; in the neighborhood of these points it is 
impossible to use Eqs. (4), (5), and (6) directly, and transformations of the integrands 
are required. When integrating around both circles it is necessary only to determine 
the lengths of the chains of the broken line A”, because their mutual location is 
entirely defined by the angles rraj of the true polygons. The computation of these 
types of integrals may be realized with the help of nonlinear substitutions, and is 
described in detail in [2]. 

Under the integral sign along the path between the circles, the starting point 
a, = exp(i#J and the final point Q+~ = h * exp(i$,+h are singular. Let us choose 
segments of small length d < 1, lying on the radii 9 = & , # = $N+1 and adjoining 
points a, and aN+1 . Equation (4) can then be used directly everywhere along the path 
of integration except along these segments. In the neighborhood of the singular point 
a, one can find the value of the integral, using the equation 

Il(Ll) = iCl . (is2>s1 Jd fi [aI ( ” 2, llin + ‘“(ii *) )1” 
0 n=a 

(13) 

Similarly, in the neighborhood of the singular point u,,,+~ , we have 

I,(d) = iC, . (hw5j4 . QBN+l 

.a,2 ( *n “2; ,i) - a,2 (+A + 1”‘;; 6) ) . a,2 ( ln \+& y2 

* exp s . pN+l 
a6N+1 

- .-. 
2h hf8 d8’ (14) 
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where 

Q = 2 (-*)“+I . (2k _ 1) . ~[4k*w-1)+11/4 

k-1 

To derive the formulas one uses the relation 6,(a) N 2&J . 6, which is valid for small, 
real values of 6. To make the integrands and their first derivatives continuous in 
Eqs. (13) and (14), it is convenient to use the substitution of variables recommended 
in [4] of the form 

t = P+l/(p + 1) for B < 0, t = P//3 for fi > 0. 

The sum of the integrals taken along the two circles determines the residue in the 
point w, = -q, whose value tends to zero with the imporvement of the values of the 
mapping parameters. 

Let us consider a finite domain, z = co $ G. In this case, one polygon is contained 
entirely inside the other one. After the transformation, the basic formula (2) takes the 
form 

z = Cl J fi [a1 ( In “,, iqOs. m&l [a4 ( i”-,f” “)18”. g + c, . (15) 

It can easily be seen that all the above relations for the infinite domain are valid 
for the finite domain too, provided the expression in the braces equals unity. The 
number of independent mapping parameters and the order of the system (12) is equal 
to the total number of the vertices M. Equation (2) and all its consequences are 
invariant with respect to substitutions of variables of the form w = 17 . exp(iy). 
Hence, the value of parameter #1 can be fixed from the beginning. We may put, for 
instance, +I = 0. After setting the initial values of the remaining parameters .$O = 
(*20,..., &O, ho), the procedure is identical to that described above for the infinite 
domain. In this case the complete integral around both circles is equal to zero, and 
this fact may be used for the control of computational accuracy. 

FIGURE 2 
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Now we consider the finite domain presented in Fig. 2 (the length of the &A, side 
is equal to unity) as the first specific example. Domains of this kind appear, for 
instance, in the design of electrostatic systems for guiding charged particle beams. 
The initial values of the parameters were arbitrarily taken to be 

a&” = 0, q&o = 1.0, ffc3” = 2.0, $h40 = 3.5, lf&o = 5.0, 

#oo = 0, z&o = -1.57, **o = -3.14, $2 = -4.71, ho = 0.2. 

We found Q” = 0.2 using Eq. (9). The final values of these parameters corresponding 
to Q < 3 x 10-4, / C, ) = 0.2664, and arg C, = 4.712 were determined using the 
procedure discussed earlier. The final values were determined to be 

$1 = 0, I,& = 1.892, a,& = 3.308, #4 = 4.920, sfb5 = 5.643, 

& = 0.0006, a/5, = -0.9206, t,&, = -3.122, t,& = -4.100, h = 0.4101. 

Knowledge of the mapping function defining the conformal mapping carrying the 
annular ring onto the domain under consideration allows one to perform a detailed 
analysis for any given distribution of the potential on the domain boundaries [l]. 
Here we restrict ourselves to the simple case in which the potentials are constant on 
each polygonal boundary. The calculated mesh of equipotential lines I w 1 = const 
and the lines of force arg w = const are shown in Fig. 2. 

FIGURE 3 

The infinite domain employed for the second example is presented in Fig. 3 (the 
length of the A,& side is equal to unity). The initial values of the parameters, taking 
into account Eq. (8), lead to the value Q” = 1.56 by using the values 

*1” = -1.66, $2” = -1.0, *30 = 0, i)qo = 1.0, *; = 2.0, 

$2 = 2.50, $70 = 3.0, *; = 3.5, $bgo = -1.0, t+byo = -2.5. 

& = -4.0, #T2 = -6.0, ho = 0.2, q” = 0.45, 
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The true parameter values correspond to Q < IO-j, ( C, 1 = 2.572 x 10-3, and 
arg C, = -4.712. These values are 

4, = -2.021, J/& = -0.5966, #3 = -0.2109, & = -0.0084, i,& = 0.5190, 

z& = 1.998, $4, = 2.939, & = 3.431, & = -2.355, & = -2.838, 

t,bI1 = -3.482, J+& = -3.832, h = 0.3933, q = 0.6285, 

Domains similar to the one presented in Fig. 3 appear, for instance, in magnetic field 
calculations in electrodynamic experiments. If the scalar magnetic potentials are 
constant on the domain boundaries, then the equipotential lines and the lines of flux 
are the images of the curves 1 w 1 = const and arg w = const, respectively. The 
calculated. mesh of these lines is presented in Fig. 3. 

It is noteworthy that the method discussed here can be advantageous also in those 
cases when the doubly connected domains are confined by superconductors or by 
perfect ferromagnetics and when the domains contain free electrostatic charges and 
currents. 
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